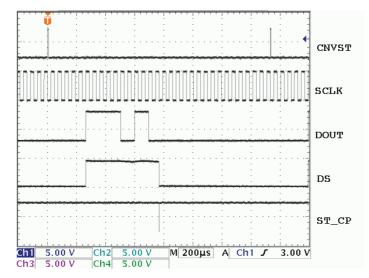


(Click to Enlarge Image) Figure 1: This stand-alone panel-display circuit drives a 12-LED logarithmic column, whose height changes by one LED for each 6.02 dB change in the input voltage.


A stand-alone circuit, it requires no trimming (as analog versions do), no microcontroller, and no software. The signal to be displayed is applied to a 12-bit ADC (IC1). For the circuit shown, that signal can range from zero (no LED ON) to +2.048 V (all LEDs ON), with the first LED coming ON at +1 mV.

When triggered by a short positive pulse at CNVST, IC1 begins a conversion, clocked by the signal at SCLK. Its output (DOUT) is clocked by the rising edge of SCLK and starts with four leading zeros, followed by the 12-bit conversion result, MSB first. Thus, one conversion result requires 16 clock pulses at SCLK.

The display is a vertical stack of 12 LEDs in which the top LED represents the MSB. During operation, the circuit scans each conversion result as it is generated (MSB first, as described above), notes the first bit with value "1," and then proceeds to illuminate that LED and all those below it. The result is a logarithmic column in which the input-voltage change necessary to move the column one step up or down is double or half the current input value (a 6.02 dB step). The number of steps available equals the ADC resolution (12 bits in this case).

At DOUT, the first output bit with a value of "1" charges C1 (via D1) to the logic-one level. The voltage on C1 connects to the data input (DS) of the first of two cascaded 74HC595 ICs, which together form a 16-bit shift register. The signal that clocks the ADC, slightly delayed, also clocks the shift register, and thereby inserts into the shift register the value presented at its input. At the end of the conversion, all bits following the first one to exhibit a "1" value are also forced to "1" by the voltage stored on C1.

After each conversion is finished, a negative pulse applied to the SC_TP inputs of both the 74HC595 ICs (**Figure 2**) transfers the internal shift-register contents to an internal parallel-output register.

(Click to Enlarge Image) Figure 2: Timing for the Figure 1 circuit. CNVST is MAX1276 Conversion trigger signal; SCLK is MAX1276 Conversion clock, and 74HC595 shift clock; DOUT is MAX1276 Conversion data out; DS is 74HC595 shift data input; ST_CP is 74HC595 Shift register to parallel register transfer clock pulse.

The same pulse discharges the storage capacitor through diode D2, leaving the circuit ready for the next conversion scan. The parallel-register outputs then serve as the column LED drivers. A 74HC4060 IC serves as clock and timing sequence generator, and a 74HC132 provides some necessary glue logic.

Thus, the LED column is a 12-step log indicator with 6-dB step height, forming a total column range of 72 dB. Its accuracy and stability are defined by the specifications for IC1. The sampling rate for the display is about 2.5 kHz, with the component values shown.

MOST COMMENTED

Currently no items

RELATED CONTENT

06.20.2007 | TECHNICAL PAPER

Integrated DC Logarithmic Amplifiers

06.13.2007 | TECHNICAL PAPER

Using the MAXQ2000 with the MAX6960 to Create a Stock Quote Display System

06.13.2007 | TECHNICAL PAPER

Getting Started with Rowley CrossWorks and the MAXQ2000 Evaluation Kit

05.18.2007 | TECHNICAL PAPER

Why and How to Implement a Frequency Boost During a CCFL Lamp Strike on the DS3881/DS3882

About the authors

Both *Alfredo H. Saab* and *Tamer Mogannam* are with <u>Maxim Integrated Products</u>, Sunnyvale, CA.

G+1 0 f Like 0

Sponsored Content

Win an R&S®Scope Rider or one of 10 GoPro cameras in our two step competition! How would you use the R&S®Scope Rider? Tell us your most innovative and unusual idea of how you would use the R&S®Scope

Rider. If your use-case is among the 10 most inspired, you'll get the chance to show us your idea in a in a 2-minute video. 10 runners-up will each receive a GoPro camera to keep and a loan R&S®Scope Rider to create a video...

Sponsored By Rohde & Schwarz

05.22.2007 | TECHNICAL PAPER Using the LCD Simulator wi

Using the LCD Simulator with MAX-IDE and IAR Embedded Workbench Development Environments

SPONSORED BLOGS

1COMMENTS

WRITE A COMMENT

Selinz POSTED: MAY 24, 2011 10:56 AM EDT What is the target application?

all articles

Subscribe to RSS updates

REPLY

or 💦 category 🗸

DEVELOPMENT	ESSENTIALS &	COMMUNITY	ARCHIVES	ABOUT US
CENTERS	EDUCATION	Insights	Embedded Systems	About Embedded
All Articles	Products	Forums	Programming /	Contact Us
Configurable Systems	News	Events	Embedded Systems Design Magazine	Newsletters
Connectivity	Source Code Library		Newsletters	Advertising
Debug & Optimization	Webinars		Videos	Editorial Contributions
MCUs, Processors & SoCs	Courses		Collections	Site Map
3005				

Tech Papers

Operating Systems

Power Optimization

Programming Languages & Tools

Prototyping &

Development

Real-time &	
Performance	
Real-world Applications	
Safety & Security	
System Integration	
GLOBAL NETWORK EE Times Asia EE Times China EE Times Europe EE Times India EE Times Japan EE Times Korea EE Times Taiwan EDN Asia EDN China EDN Japan ESC Brazil	
UBM	
UBM Communities	
EE Times EDN EBN DataSheets.com Embedded TechOnline Design News DesignCon ESC	
Working With Us: About Contact Us Media Kits	
Terms of Service Privacy Statement Copyright ©2016 UBM All Rights Reserved	
	🕄 Contact