
Cgit, Nginx & Gitolite: A Personal Git Server
nginx + cgit + gitolite = $5/month
published: 12 January 2021

I've been on a "own my online presence" kick for more than a year now. So for this (overly
protracted) essay, I thought I'd publish my notes on how I created my own Git server.

There are many open source projects like GitTea or GitLab to make hosting your own git projects
effortless; however I wanted a much more simple (read: old school) setup. I ended up with
something that uses many of the same projects that the Linux Organization uses to publish the
Linux Kernel

The server (as of this writing) uses Ubuntu's 20.04.1 LTS (Focal Fossa) running on Digital Ocean's
hardware (referral-link). I wholeheartedly support and recommend you chose a different setup.
Diversity in people and in tech stack is always and will always be a great thing.

What lies below can be broken into 3 main topics:

1. The Start prepares a newly minted server for git hosting duties. Creating a new admin user,
locking down the OpenSSH daemon, and installing fail2ban.

2. Gitolite installs and configures the server to allow us (and colleagues) to have more fine-
grained control over who has access to git push|fetch on the server.

3. And Cgit, fcgiwrap, and Nginx to create a web-server to view our published projects.

In the end, you'll have a server much like this one.
Enjoy!

The Start
I often find security "best practices" are a lot like driving down the highway. Some people speeding
past you are "obviously" just moments away from a major data breach, while the others you're
passing are "clearly" so worried about the entire data-center burning down, they couldn't possibly
get anything else done. Everyone thinks everyone else has lost their marbles.

So with that in mind, here are a few steps I took to secure my newly minted server. Please feel free
to use only the "best practices" you deem appropriate for your mission.

Or just skip to the "installing Gitolite" part directly.

Admin User
For whatever reason, be it for security or protecting the server from my stupidity, one of the first
things I do when creating a new server is add a new user for my general admin tasks.

Adding a new user is remarkably easy to do on a Ubuntu system:

$ adduser limb

You'll be prompted to answer a few questions, including creating a new UNIX password. This will be
the password you'll need to sudo -i and gain root permissions, so make it a good one, or use tools
like Pass, or BitWarden to help you remember.

Then give our new limb user sudo permissions:

$ usermod -G sudo limb

I've also largely eliminated all password based authentication when signing into servers, relying on
open source smart cards like NitroKey for authentication. If interested, this requires we setup
.ssh/authorized_keys for our limb user:

Just replace key with your public ssh key:

$ mkdir /home/limb/.ssh
$ echo "key" > /home/limb/.ssh/authorized_keys

Next, set the .ssh directory's file permissions so the ssh daemon can read the files:

$ chown -R limb:limb /home/limb/.ssh
$ chmod 700 /home/limb/.ssh
$ chmod 644 /home/limb/.ssh/authorized_keys

Keep in Mind:
If the authorized_keys file or the .ssh directory's permissions are set too permissively (eg:
0777) the SSH daemon will refuse to load the files.

If everything worked, after you restart the ssh daemon (service sshd restart) you will now be able
to login as the administrator user:

$ ssh limb@host

OpenSSH
Git and Gitolite (installed in the next sections) will need us to keep port 22 open, allowing us to
git push from anywhere on the internet. This open port will eventually attract "a lot" of attention

from bots who endlessly scour the internet looking for vulnerable servers, mindlessly stuffing
passwords, hoping one password will eventually let them in.

We can eliminate all worry about weak or compromised passwords by disabling all password based
authentication, relying solely on asymmetric cryptography, or "ssh keys". Just use your favorite
text editor to open /etc/ssh/sshd_config and ensure these lines exist somewhere in it:

PubkeyAuthentication yes
PasswordAuthentication no

New to ssh keys?
Digital Ocean has a nice write-up on how to get started with ssh keys.

While we're here, a large majority [1] of these bots are interested in logging in as the root user. If
you created a new admin account in the previous section and ensured you can login using your
public key, you can also disable root logins entirely with this line in the config:

PermitRootLogin no

[1] Some simple "bash-fu" on my /var/log/auth.log shows ~93.58% of the roughly 15,000 login attempts since I
started this server, tried to login as root Second place was the user git (including legitimate logins) at
~1.82%.

If you uploaded your public key to your VPS provider, most of these changes should have already
been configured for you. But in the off chance you had to make some changes, restart the ssh
service to load the new config changes in:

$ service ssh restart

Uncomplicated FireWall
Depending on your VPS provider, they may also have a firewall system built into their admin panel
allowing you to apply rules simply by adding tags to a server. However, I enjoy keeping all my
firewall rules inside each box, if only for the same reason I keep all my socks on the left hand
drawer, so everything stays organized and in the same place.

You can install ufw using the Advanced Packaging Tool:

$ apt install ufw

Right now, the only thing we have enabled is ssh which uses port 22. To allow port 22 through
ufw just use the following command:

$ ufw allow ssh

and then turn the firewall on:

$ ufw enable

and viola! You have a firewall.

fail2ban
Even though we've turned off password based authentication in a previous section, we will still
receive a significant amount of bots wasting our compute cycles trying to login. And while the
likelihood of this being successful is zero when rounded to any order of magnitude, the bots will
nevertheless continue to pilfer a non-zero amount of CPU if given the opportunity.

To stop the most brazen of these bots, tools like Fail2Ban, which creates temporary firewall rules
to block IP address who repeatedly fail to authenticate with ssh , are a great compromise between
usefulness and annoyance.

The Advanced Packaging Tool can again help us install fail2ban .

$ apt install fail2ban

Once installed, the ssh "jail" will come pre-enabled for you. If you wish to make any changes, you
will need to make a copy of the fail2ban config file:

$ cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

Then add your changes to jail.local so they will persist after an upgrade.

fail2ban does a great job documenting what each option does in the config file. Some of the
changes I made are:

because I use ufw to manage my firewall, I changed banaction = ufw .

enabled bantime.increment to increase the duration of a ban based on how many times the IP
address has been banned previously.

enabled bantime.rndtime to "randomize" the length of a ban, preventing bots from knowing
exactly when they can resume their assault.

enabled bantime.maxtime so I won't need to unban IP addresses (if you're unfortunate
enough to share an IP with a bot).

lowered bantime , findtime and maxretry allowing me to issue small bans that increase in
severity as the IP address continues to antagonize.

Once you're satisfied with your changes, start fail2ban using systemd .

$ systemctl enable fail2ban
$ systemctl start fail2ban

And Done!

Keep in Mind:
Any "script-kiddie" (read: jackass) that runs a pen-test script they found on Reddit from a
large network (eg: college, Starbucks) could ban everyone on that network from your server.
Make sure your ban rules have a way to forgive, unless you enjoy playing sys-admin.

Depending on how "popular" you are on the internet, you should start to see NOTICE lines in
/var/log/fail2ban.log of misbehaving bots and the equivalent firewall rules in ufw .

$ cat /var/log/fail2ban.log | grep 'NOTICE' | tail -1
... [125553]: NOTICE [sshd] Ban 156.155.159.161

$ ufw status
Status: active

To Action From
-- ------ ----
Anywhere REJECT 156.155.159.161
22/tcp ALLOW Anywhere
22/tcp (v6) ALLOW Anywhere (v6)

Gitolite
Installing Gitolite is amazingly simple, there are no binaries to compile or daemons to monitor.

At its core, Gitolite is just a collection of Perl scripts that run after someone signs into the server
using the ssh daemon we configured in the previous sections. Once installed, Gitolite will give us
more fine-grained-control over who has git push|fetch permissions to each repository. I encourage
you to checkout Gitolite's amazing documentation if only to see how capable Gitolite can be.

Step: 1 - Create The Git User
Before we install Gitolite, we'll need to create a new user for everyone to log into and to run
Gitolite's Perl scripts. I typically use the username git for this, feel free to replace git with the
username that you feel is more appropriate.

$ adduser --system --group --disabled-password --home /var/lib/git git

This creates a new system-user on the server called git . Because this is not a "normal" user, there
will be no aging information in /etc/shadow , which is convenient when nobody will be monitoring
this account.

We also used the --home option to set the $HOME variable to /var/lib/git . This is where we will
eventually put Gitolite's configuration files and our Git repositories. Feel free to adjust this to

https://gitea.io/en-us/
https://gitlab.com/
https://www.kernel.org/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
http://www.releases.ubuntu.com/20.04/
https://www.digitalocean.com/
https://m.do.co/c/b0f6f650ad4e
https://git.bryanbrattlof.com
https://www.passwordstore.org/
https://bitwarden.com/
https://www.nitrokey.com/
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/
https://www.digitalocean.com/community/tutorials/how-to-set-up-ssh-keys-on-ubuntu-20-04
https://github.com/fail2ban/fail2ban
https://gitolite.com/gitolite/index.html
https://www.perl.org/
https://gitolite.com/gitolite/basic-admin.html

where you prefer, I've seen many use /home/git .

I included the --disabled-password to disable any password based access into our new user. In the
previous sections, we've disabled all password based authentication into the server and Gitolite
requires ssh keys for authentication, so disabling passwords for our user is a smart move.

Step: 2 - Install Gitolite
Because Gitolite is just a bunch of Perl scripts, I prefer to install Gitolite from the source. As we will
see, installing Gitolite from source also has the benefit of making upgrades and adding custom
patches in the future extremely easy.

This also means we'll need to install Gitolite's dependencies ourselves:

$ apt install perl git

When we (or a colleague) signs into the server, using the git user, we will automatically run
Gitolite's Perl scripts, which means these scripts must be executable by our git user. So, to make
managing file permissions easier, we'll use our git user for the rest of the installation process.

Log into our git user with the "substitute user" command: (assuming you're the root user)

$ su - git

Then clone Gitolite's source code into the $HOME directory: (this should be /var/lib/git unless you
changed it when we setup the git user above)

$ git clone https://github.com/sitaramc/gitolite

� The More You Know:
If you want to use a particular version of Gitolite or want to add custom patches, cd into the
$HOME/gitolite directory and git checkout the desired tag, branch, or commit. All changes will

be picked up immediately the next time someone logs in.

Step: 3 - Setup Gitolite
To setup Gitolite on the server, we'll need to assign Gitolite an admin that will have full control
over editing Gitolite's configuration repository. This will most likely be you.

Still as the git user, use your favorite text editor to create a new file with your desired username
in the $HOME directory and copy your public ssh key into it. For example, my file would be called
bryanbrattlof.pub and look like this:

$ cat $HOME/bryanbrattlof.pub
ssh-ed25519 AAAAC3NzaC1l ...

Then run Gitolite's sanity checks and setup script to finish the installation:

$ $HOME/gitolite setup -pk bryanbrattlof.pub

Färdig!

If everything went well, you should now be able to clone Gitolite's configuration repository:

$ git clone git@host:gitolite-admin

I recommend consulting Gitolite's incredible documentation to understand how to properly
configure access and add hooks to all of your projects.

� Uh Oh:
If you're asked for a password when your try to clone gitolite-admin then something has gone
wrong. This is usually a permission issue. Again, consult Gitolite's superb documentation for
some of the more common troubleshooting advice.

Step: 4 - Add ~/.profile
While not technically needed for Gitolite to function properly, I find adding gitolite to our git user's
$PATH is a great quality of life improvement on the rare days I need to play system administrator.

First, as our git user, create a new $HOME/bin directory:

$ mkdir -p $HOME/bin

Next, create the $HOME/.profile file and add the $HOME/bin directory to our $PATH .

PATH=$HOME/bin:$PATH

The born again shell will automatically run $HOME/.profile when someone starts a new session.

Now, we can use Gitolite's install script to add a symbolic link inside our $HOME/bin folder:

$ gitolite/install -ln $HOME/bin

Done!

Logout and back in to the git user (or use source $HOME/.profile) to pick up the changes. If
everything was done correctly, you won't need to type the full path to Gitolite anymore.

$ whereis gitolite
gitolite: /var/lib/git/bin/gitolite

Cgit
Cgit is a script (written in C) that uses the Common Gateway Interface (CGI) specification to give
people a web view of our projects. Convenient when you don't have access to your terminal or just
want to lookup (or showoff) some changes to a project.

It operates as a back-end (much like PHP) to a webserver (we'll install Nginx in the next sections)
that will parse our repositories and return a web-page for our webserver to distribute.

To get an idea for what Cgit will look like, some of the more popular projects that use Cgit are the
Linux and FreeBSD kernels, along with Wireguard and Cgit itself.

Step: 1 - Install Cgit
Just like with Gitolite, I prefer to install Cgit from source so I can add personal patches and quickly
change what version is running on the server. This also means we'll need to install the
dependencies ourselves:

$ apt install libc6 liblua5.1-0 zlib1g \
 python3-docutils python3-markdown python3-pygments

We'll also need the build-essential packages to install the gcc and make tools needed to compile
Cgit after we've cloned the project:

$ apt install build-essential

Then, as the root user in the /root directory clone the Cgit project:

$ git clone https://git.zx2c4.com/cgit

Because Cgit uses parts of Git's source code, (included as a submodule) we'll need to use
git submodule to download the remaining code from the Git project.

After you cd into cgit

$ git submodule init # register the git submodule in .git/config
$ git submodule update # clone/fetch and checkout correct git version

Step: 2 - Build Cgit
With a full copy of Cgit on the server, we can now create some patches to customize it for our use-
case. We'll start with creating cgit.conf inside the cgit project we just cloned, to tell make where
we want to install the Cgit binaries.

CGIT_SCRIPT_PATH = /var/www/html/cgit/cgi
CGIT_CONFIG = /var/www/html/cgit/cgitrc
CACHE_ROOT = /var/www/html/cgit/cache
prefix = /var/www/html/cgit
libdir = $(prefix)
filterdir = $(libdir)/filters

Because this is a version controlled project, we can commit our changes to save our work:

$ git add -f cgit.conf
$ git commit -m "installation path changes"

Some additional changes I made:

Updated the cgit.png and favicon.ico icons

Changed the pygments highlighting style to "algol_nu"

Removed the Data URI icons from the tab menu

Limited the max-width of readme pages to 95ch

Added padding: 1em; to code-blocks

When you're satisfied with your changes, use make to compile and install Cgit:

$ make && make install

If everything went well, when you execute Cgit from the terminal, a web-page should print out:

$./cgit
Content-Type: text/html; charset=UTF-8
Last-Modified: Tue, 12 Jan 2021 22:35:43 GMT
Expires: Tue, 12 Jan 2021 22:40:43 GMT

<!DOCTYPE html>

And Done!

We can further customize Cgit's behavior using the cgitrc file located at /var/www/html/cgit/cgitrc .
Feel free to check out the man page for a complete description of what every option does.

Some of the options I used:

set scan-path to the location of our repositories /var/lib/git/repositories

set project-list to the location of the projects.list file Gitolite creates, adding descriptions and
categories to the list of repositories on Cgit's index page

FastCGI Wrapper
Cgit, which uses code from Git, was designed to let users run a command (eg: git push) then exit,
allowing our computers to reclaim the used resources between each call. Nginx uses a faster
protocol (FastCGI) which calls the same program multiple times without exiting.

However because Cgit was designed to exit after every run, it will never give back its used
resources and will continue to take more, quickly exhausting all of the computer's available
resources. This is why we need fcgiwrap .

Thankfully this is easy to install. The Advanced Packaging Tool can, once again, help:

$ apt install fcgiwrap

Then just enable and start the service:

$ systemctl enable fcgiwrap
$ systemctl start fcgiwrap

And that's a wrap!

Nginx
With Cgit and the FastCGI Wrapper installed, we can now turn our attentions to Nginx, which can
be installed using the Advanced Packaging Tool:

$ apt install nginx

Next, create a new configuration file in the /etc/nginx/sites-enabled directory, replacing
git.bryanbrattlof.com with your domain. The minimum configuration file you'll need for Cgit to work

will look something like this:

https://github.com/sitaramc/gitolite
https://www.gnu.org/software/emacs/
https://gitolite.com/gitolite/basic-admin.html
https://gitolite.com/gitolite/
https://www.gnu.org/software/bash/
https://git.zx2c4.com/cgit/about/
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://www.php.net/
https://git.kernel.org
https://cgit.freebsd.org/
https://git.zx2c4.com/?q=wireguard
https://git.zx2c4.com/cgit/about/
https://git.zx2c4.com/cgit/
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://en.wikipedia.org/wiki/Data_URI_scheme
https://git.zx2c4.com/cgit/tree/cgitrc.5.txt
https://en.wikipedia.org/wiki/FastCGI

server {
 server_name git.bryanbrattlof.com;

 listen [::]:80;
 listen 80;

 access_log /var/log/nginx/cgit-access.log;
 error_log /var/log/nginx/cgit-error.log;

 root /var/www/html/cgit/cgi;
 try_files $uri @cgit;

 location @cgit {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME /var/www/html/cgit/cgi/cgit.cgi;
 fastcgi_pass unix:/run/fcgiwrap.socket;

 fastcgi_param PATH_INFO $uri;
 fastcgi_param QUERY_STRING $args;
 fastcgi_param HTTP_HOST $server_name;
 }
}

Feel free to add more to this, I've added a custom 5xx page, caching headers, as well as
recommendations from Mozilla Observatory.

Once satisfied, start the Nginx service and open port 80 in the firewall:

$ service nginx start
$ ufw allow http

If something went wrong, or if you ever change the configuration file, you can use nginx -t to check
the configuration for errors and nginx -s reload to restart the Nginx server.

$ nginx -t && nginx -s reload

Wrapping Up
By now we should have a working git server. However like most creative things "90% done ... 90%
left to go." There is truly an endless supply of things you can and should add or configure to make
your server more secure and accessible. If you're the type that likes to learn, then you'll likely find
this as fun and rewarding experience as I did.

Some of the extra things I added:

Installed certbot to install and manage a free SSL certificate from Let's Encrypt. This has
largely been mandatory for any public server for around 5 years now

Created a Borg based backup script with a Borg specific subscription to rsync.net to backup
my projects. Useful when that jackass we talked about finds a 0-day

Created a Git Daemon service to allow people to clone my projects using the git:// protocol,
if they prefer

Placed a bunch of Healthchecks Pings in the scripts and service required to keep everything
running. Fail2Ban, Borg Backup, Certbot, all will alert me when cron or systemd fall over

All of which should be given their own essay as they can be used in all your setups, not just in this
fully open-source and free (as in libre) git server.

Home About Connect Projects

My work is powered by Pelican, and licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License

https://git.bryanbrattlof.com/500/
https://observatory.mozilla.org/analyze/git.bryanbrattlof.com
https://certbot.eff.org/
https://letsencrypt.org/
https://www.borgbackup.org/
https://rsync.net/products/attic.html
https://git-scm.com/book/en/v2/Git-on-the-Server-Git-Daemon
https://healthchecks.io/
https://bryanbrattlof.com/
https://bryanbrattlof.com/hi/
https://bryanbrattlof.com/connect/
https://git.bryanbrattlof.com
https://blog.getpelican.com/
https://creativecommons.org/licenses/by-nc/4.0/

	Cgit, Nginx & Gitolite: A Personal Git Server
	The Start
	Admin User
	OpenSSH
	Uncomplicated FireWall
	fail2ban

	Gitolite
	Step: 1 - Create The Git User
	Step: 2 - Install Gitolite
	Step: 3 - Setup Gitolite
	Step: 4 - Add ~/.profile

	Cgit
	Step: 1 - Install Cgit
	Step: 2 - Build Cgit

	FastCGI Wrapper
	Nginx
	Wrapping Up

