
← August 2017 September 2017 →

Je me souviens

Everything here is my opinion. I do not speak for your
employer.

2017-08-10 »
The world in which IPv6 was a good design

Last November I went to an IETF meeting for the first time.
The IETF is an interesting place; it seems to be about 1/3
maintenance grunt work, 1/3 extending existing stuff, and
1/3 blue sky insanity. I attended mostly because I wanted to
see how people would react to TCP BBR, which was being
presented there for the first time. (Answer: mostly positively,
but with suspicion. It kinda seemed too good to be true.)

Anyway, the IETF meetings contain lots and lots of
presentations about IPv6, the thing that was supposed to
replace IPv4, which is what the Internet runs on. (Some would
say IPv4 is already being replaced; some would say it has
already happened.) Along with those presentations about
IPv6, there were lots of people who think it's great, the
greatest thing ever, and they're pretty sure it will finally
catch on Any Day Now, and IPv4 is just a giant pile of hacks
that really needs to die so that the Internet can be elegant
again.

I thought this would be a great chance to really try to figure
out what was going on. Why is IPv6 such a complicated mess
compared to IPv4? Wouldn't it be better if it had just been
IPv4 with more address bits? But it's not, oh goodness, is it
ever not. So I started asking around. Here's what I found.

Buses ruined everything

Once upon a time, there was the telephone network, which
used physical circuit switching. Essentially, that meant
moving connectors around so that your phone connection
was literally just a very long wire ("OSI layer 1"). A "leased
line" was a very long wire that you leased from the phone
company. You would put bits in one end of the wire, and
they'd come out the other end, a fixed amount of time later.
You didn't need addresses because there was exactly one
machine at each end.

Eventually the phone company optimized that a bit. Time-
division multiplexing (TDM) and "virtual circuit switching"
was born. The phone company could transparently take the
bits at a slower bit rate from multiple lines, group them
together with multiplexers and demultiplexers, and let them
pass through the middle of the phone system using fewer
wires than before. Making that work was a little complicated,
but as far as we modem users were concerned, you still put
bits in one end and they came out the other end. No
addresses needed.

The Internet (not called the Internet at the time) was built on
top of these circuits. You had a bunch of wires that you could
put bits into and have them come out the other side. If one
computer had two or three interfaces, then it could, if given
the right instructions, forward bits from one line to another,
and you could do something a lot more efficient than a
separate line between each pair of computers. And so IP
addresses ("layer 3"), subnets, and routing were born. Even
then, with these point-to-point links, you didn't need MAC
addresses, because once a packet went into the wire, there
was only one place it could come out. You used IP addresses
to decide where it should go after that.

Meanwhile, LANs got invented as an alternative. If you
wanted to connect computers (or terminals and a mainframe)
together at your local site, it was pretty inconvenient to need
multiple interfaces, one for each wire to each satellite
computer, arranged in a star configuration. To save on
electronics, people wanted to have a "bus" network (also
known as a "broadcast domain," a name that will be
important later) where multiple stations could just be
plugged into a single wire, and talk to any other station
plugged into the same wire. These were not the same people
as the ones building the Internet, so they didn't use IP
addresses for this. They all invented their own scheme ("layer
2").

One of the early local bus networks was arcnet, which is dear
to my heart (I wrote the first Linux arcnet driver and arcnet
poetry way back in the 1990s, long after arcnet was
obsolete). Arcnet layer 2 addresses were very simplistic: just
8 bits, set by jumpers or DIP switches on the back of the
network card. As the network owner, it was your job to
configure the addresses and make sure you didn't have any
duplicates, or all heck would ensue. This was kind of a pain,
but arcnet networks were usually pretty small, so it was only
kind of a pain.

A few years later, ethernet came along and solved that
problem once and for all, by using many more bits (48, in
fact) in the layer 2 address. That's enough bits that you can
assign a different (sharded-sequential) address to every
device that has ever been manufactured, and not have any
overlaps. And that's exactly what they did! Thus the ethernet
MAC address was born.

Various LAN technologies came and went, including one of
my favourites, IPX (Internetwork Packet Exchange, though it
had nothing to do with the "real" Internet) and Netware,
which worked great as long as all the clients and servers
were on a single bus network. You never had to configure
any addresses, ever. It was beautiful, and reliable, and
worked. The golden age of networking, basically.

Of course, someone had to ruin it: big company/university
networks. They wanted to have so many computers that
sharing 10 Mbps of a single bus network between them all
became a huge bottleneck, so they needed a way to have
multiple buses, and then interconnect - "internetwork," if you
will - those buses together. You're probably thinking, of
course! Use the Internet Protocol for that, right? Ha ha, no.
The Internet protocol, still not called that, wasn't mature or
popular back then, and nobody took it seriously. Netware-
over-IPX (and the many other LAN protocols at the time) were
serious business, so as serious businesses do, they invented
their own thing(s) to extend the already-popular thing,
ethernet. Devices on ethernet already had addresses, MAC
addresses, which were about the only thing the various LAN
protocol people could agree on, so they decided to use
ethernet addresses as the keys for their routing mechanisms.
(Actually they called it bridging and switching instead of
routing.)

The problem with ethernet addresses is they're assigned
sequentially at the factory, so they can't be hierarchical. That
means the "bridging table" is not as nice as a modern IP
routing table, which can talk about the route for a whole
subnet at a time. In order to do efficient bridging, you had to
remember which network bus each MAC address could be
found on. And humans didn't want to configure each of those
by hand, so it needed to figure itself out automatically. If you
had a complex internetwork of bridges, this could get a little
complicated. As I understand it, that's what led to the
spanning tree poem, and I think I'll just leave it at that. Poetry
is very important in networking.

Anyway, it mostly worked, but it was a bit of a mess, and you
got broadcast floods every now and then, and the routes
weren't always optimal, and it was pretty much impossible to
debug. (You definitely couldn't write something like
traceroute for bridging, because none of the tools you need
to make it work - such as the ability for an intermediate
bridge to even have an address - exist in plain ethernet.)

On the other hand, all these bridges were hardware-
optimized. The whole system was invented by hardware
people, basically, as a way of fooling the software, which had
no idea about multiple buses and bridging between them,
into working better on large networks. Hardware bridging
means the bridging could go really really fast - as fast as the
ethernet could go. Nowadays that doesn't sound very special,
but at the time, it was a big deal. Ethernet was 10 Mbps,
because you could maybe saturate it by putting a bunch of
computers on the network all at once, not because any one
computer could saturate 10 Mbps. That was crazy talk.

Anyway, the point is, bridging was a mess, and impossible to
debug, but it was fast.

Internet over buses

While all that was happening, those Internet people were
getting busy, and were of course not blind to the invention of
cool cheap LAN technologies. I think it might have been
around this time that the ARPANET got actually renamed to
the Internet, but I'm not sure. Let's say it was, because the
story is better if I sound confident.

At some point, things progressed from connecting individual
Internet computers over point-to-point long distance links, to
the desire to connect whole LANs together, over point-to-
point links. Basically, you wanted a long-distance bridge.

You might be thinking, hey, no big deal, why not just build a
long distance bridge and be done with it? Sounds good,
doesn't work. I won't go into the details right now, but
basically the problem is congestion control. The deep dark
secret of ethernet bridging is that it assumes all your links
are about the same speed, and/or completely uncongested,
because they have no way to slow down. You just blast data
as fast as you can, and expect it to arrive. But when your
ethernet is 10 Mbps and your point-to-point link is 0.128

https://apenwarr.ca/
https://apenwarr.ca/log/?m=201708
https://apenwarr.ca/log/?m=201709
https://datatracker.ietf.org/meeting/97/materials/slides-97-iccrg-bbr-congestion-control
https://tools.ietf.org/html/rfc1710
https://en.wikipedia.org/wiki/OSI_model
http://apenwarr.ca/arcnet/howto/intro.html
http://etherealmind.com/algorhyme-radia-perlman/
https://en.wikipedia.org/wiki/Network_congestion


Mbps, that's completely hopeless. Separately, the idea of
figuring out your routes by flooding all the links to see which
one is right - this is the actual way bridging typically works -
is hugely wasteful for slow links. And sub-optimal routing, an
annoyance on local networks with low latency and high
throughput, is nasty on slow, expensive long-distance links. It
just doesn't scale.

Luckily, those Internet people (if it was called the Internet
yet) had been working on that exact set of problems. If we
could just use Internet stuff to connect ethernet buses
together, we'd be in great shape.

And so they designed a "frame format" for Internet packets
over ethernet (and arcnet, for that matter, and every other
kind of LAN).

And that's when everything started to go wrong.

The first problem that needed solving was that now, when
you put an Internet packet onto a wire, it was no longer clear
which machine was supposed to "hear" it and maybe forward
it along. If multiple Internet routers were on the same
ethernet segment, you couldn't have them all picking it up
and trying to forward it; that way lies packet storms and
routing loops. No, you had to choose which router on the
ethernet bus is supposed to pick it up. We can't just use the
IP destination field for that, because we're already using that
for the final destination, not the router destination. Instead,
we identify the desired router using its MAC address in the
ethernet frame.

So basically, to set up your local IP routing table, you want to
be able to say something like, "send packets to IP address
10.1.1.1 via the router at MAC address 11:22:33:44:55:66."
That's the actual thing you want to express. This is
important! Your destination is an IP address, but your router
is a MAC address. But if you've ever configured a routing
table, you might have noticed that nobody writes it like that.
Instead, because the writers of your operating system's
TCP/IP stack are stubborn, you write something like "send
packets to IP address 10.1.1.1 via the router at IP address
192.168.1.1."

In truth, that really is just complicating things. Now your
operating system has to first look up the ethernet address of
192.168.1.1, find out it's 11:22:33:44:55:66, and finally
generate a packet with destination ethernet address
11:22:33:44:55:66 and destination IP address 10.1.1.1.
192.168.1.1 shows up nowhere in the packet; it's just an
abstraction at the human level.

To do that pointless intermediate step, you need to add ARP
(address resolution protocol), a simple non-IP protocol whose
job it is to convert IP addresses to ethernet addresses. It does
this by broadcasting to everyone on the local ethernet bus,
asking them all to answer if they own that particular IP
address. If you have bridges, they all have to forward all the
ARP packets to all their interfaces, because they're ethernet
broadcast packets, and that's what broadcasting means. On a
big, busy ethernet with lots of interconnected LANs,
excessive broadcasts start becoming one of your biggest
nightmares. It's especially bad on wifi. As time went on,
people started making bridges/switches with special hacks to
avoid forwarding ARP as far as it's technically supposed to
go, to try to cut down on this problem. Some devices
(especially wifi access points) just make fake ARP answers to
try to help. But doing any of that is a hack, albeit sometimes
a necessary hack.

Death by legacy

Time passed. Eventually (and this actually took quite a
while), people pretty much stopped using non-IP protocols on
ethernet at all. So basically all networks became a physical
wire (layer 1), with multiple stations on a bus (layer 2), with
multiple buses connected over bridges (gotcha! still layer 2!),
and those inter-buses connected over IP routers (layer 3).

After a while, people got tired of manually configuring IP
addresses, arcnet style, and wanted them to auto-configure,
ethernet style, except it was too late to literally do it
ethernet style, because a) the devices had already been
manufactured with ethernet addresses, not IP addresses, and
b) IP addresses were only 32 bits, which is not enough to just
manufacture them forever with no overlaps, and c) just
assigning IP addresses sequentially instead of using subnets
would bring us back to square one: it would just be ethernet
over again, and we already have ethernet.

So that's where bootp and DHCP came from. Those protocols,
by the way, are special kinda like ARP is special (except they
pretend not to be special, by technically being IP packets).
They have to be special, because an IP node has to be able to
transmit them before it has an IP address, which is of course
impossible, so it just fills the IP headers with essentially
nonsense (albeit nonsense specified by an RFC), so the
headers might as well have been left out. (You know these
"IP" headers are nonsense because the DHCP server has to
open a raw socket and fill them in by hand; the kernel IP
layer can't do it.) But nobody would feel nice if they were
inventing a whole new protocol that wasn't IP, so they
pretended it was IP, and then they felt nice. Well, as nice as
one can feel when one is inventing DHCP.

Anyway, I digress. The salient detail here is that unlike real IP
services, bootp and DHCP need to know about ethernet
addresses, because after all, it's their job to hear your
ethernet address and assign you an IP address to go with it.
They're basically the reverse of ARP, except we can't say
that, because there's a protocol called RARP that is literally
the reverse of ARP. Actually, RARP worked quite fine and did
the same thing as bootp and DHCP while being much simpler,
but we don't talk about that.

The point of all this is that ethernet and IP were getting
further and further intertwined. They're nowadays almost
inseparable. It's hard to imagine a network interface (except
ppp0) without a 48-bit MAC address, and it's hard to imagine
that network interface working without an IP address. You
write your IP routing table using IP addresses, but of course
you know you're lying when you name the router by IP
address; you're just indirectly saying that you want to route
via a MAC address. And you have ARP, which gets bridged
but not really, and DHCP, which is an IP packet but is really
an ethernet protocol, and so on.

Moreover, we still have both bridging and routing, and they
both get more and more complicated as the LANs and the
Internet get more and more complicated, respectively.
Bridging is still, mostly, hardware based and defined by IEEE,
the people who control the ethernet standards. Routing is
still, mostly, software based and defined by the IETF, the
people who control the Internet standards. Both groups still
try to pretend the other group doesn't exist. Network
operators basically choose bridging vs routing based on how
fast they want it to go and how much they hate configuring
DHCP servers, which they really hate very much, which
means they use bridging as much as possible and routing
when they have to.

In fact, bridging has gotten so completely out of control that
people decided to extract the layer 2 bridging decisions out
completely to a higher level (with configuration exchanged
between bridges using a protocol layered over IP, of course!)
so it can be centrally managed. That's called software-
defined networking (SDN). It helps a lot, compared to letting
your switches and bridges just do whatever they want, but
it's also fundamentally silly, because you know what's
software defined networking? IP. It is literally and has always
been the software-defined network you use for
interconnecting networks that have gotten too big. But the
problem is, IPv4 was initially too hard to hardware accelerate,
and anyway, it didn't get hardware accelerated, and
configuring DHCP really is a huge pain, so network operators
just learned how to bridge bigger and bigger things. And
nowadays big data centers are basically just SDNed, and you
might as well not be using IP in the data center at all,
because nobody's routing the packets. It's all just one big
virtual bus network.

It is, in short, a mess.

Now forget I said all that...

Great story, right? Right. Now pretend none of that
happened, and we're back in the early 1990s, when most of
that had in fact already happened, but people at the IETF
were anyway pretending that it hadn't happened and that
the "upcoming" disaster could all be avoided. This is the good
part!

There's one thing I forgot to mention in that big long story
above: somewhere in that whole chain of events, we
completely stopped using bus networks. Ethernet is not
actually a bus anymore. It just pretends to be a bus.
Basically, we couldn't get ethernet's famous CSMA/CD to
keep working as speeds increased, so we went back to the
good old star topology. We run bundles of cables from the
switch, so that we can run one cable from each station all the
way back to the center point. Walls and ceilings and floors
are filled with big, thick, expensive bundles of ethernet,
because we couldn't figure out how to make buses work
well... at layer 1. It's kinda funny actually when you think
about it. If you find sad things funny.

In fact, in a bonus fit of insanity, even wifi - the ultimate bus
network, right, where literally everybody is sharing the same
open-air "bus" - we almost universally use wifi in a mode,
called "infrastructure mode," which simulates a giant star
topology. If you have two wifi stations connected to the same
access point, they don't talk to each other directly, even
when they can hear each other just fine. They send a packet
to the access point, but addressed to the MAC address of the
other node. The access point then bounces it back out to the

https://en.wikipedia.org/wiki/Carrier-sense_multiple_access_with_collision_detection


destination node.

HOLD THE HORSES LET ME JUST REVIEW THAT FOR YOU.
There's a little catch there. When node X wants to send to
Internet node Z, via IP router Y, via wifi access point A, what
does the packet look like? Just to draw a picture, here's what
we want to happen:

X -> [wifi] -> A -> [wifi] -> Y -> [internet] -> Z

Z is the IP destination, so obviously the IP destination field
has to be Z. Y is the router, which we learned above that we
specify by using its ethernet MAC address in the ethernet
destination field. But in wifi, X can't just send out a packet to
Y, for various reasons (including that they don't know each
other's WPA2 encryption keys). We have to send to A. Where
do we put A's address, you might ask?

No problem! 802.11 has a thing called 3-address mode. They
add a third ethernet MAC address to every frame, so they can
talk about the real ethernet destination, and the intermediate
ethernet destination. On top of that, there are bit fields called
"to-AP" and "from-AP," which tell you if the packet is going
from a station to an AP, or from an AP to a station,
respectively. But actually they can both be true at the same
time, because that's how you make wifi repeaters (APs send
packets to APs).

Speaking of wifi repeaters! If A is a repeater, it has to send
back to the base station, B, along the way, which looks like
this:

X -> [wifi] -> A -> [wifi-repeater] -> B -> [wifi] -> Y -> [internet] -> Z

X->A uses three-address mode, but A->B has a problem: the
ethernet source address is X, and the ethernet destination
address is Y, but the packet on the air is actually being sent
from A to B; X and Y aren't involved at all. Suffice it to say
that there's a thing called 4-address mode, and it works
pretty much like you think.

(In 802.11s mesh networks, there's a 6-address mode, and
that's about where I gave up trying to understand.)

Avery, I was promised IPv6, and you haven't even
mentioned IPv6

Oh, oops. This post went a bit off the rails, didn't it?

Here's the point of the whole thing. The IETF people, when
they were thinking about IPv6, saw this mess getting made -
and maybe predicted some of the additional mess that would
happen, though I doubt they could have predicted SDN and
wifi repeater modes - and they said, hey wait a minute, stop
right there. We don't need any of this crap! What if instead
the world worked like this?

No more physical bus networks (already done!)
No more layer 2 internetworks (that's what layer 3 is for)
No more broadcasts (layer 2 is always point-to-point, so
where would you send the broadcast to? replace it with
multicast instead)
No more MAC addresses (on a point-to-point network, it's
obvious who the sender and receiver are, and you can do
multicast using IP addresses)
No more ARP and DHCP (no MAC addresses, no so
mapping IP addresses to MAC addresses)
No more complexity in IP headers (so you can hardware
accelerate IP routing)
No more IP address shortages (so we can go back to
routing big subnets again)
No more manual IP address configuration except at the
core (and there are so many IP addresses that we can
recursively hand out subnets down the tree from there)

Imagine that we lived in such a world: wifi repeaters would
just be IPv6 routers. So would wifi access points. So would
ethernet switches. So would SDN. ARP storms would be gone.
"IGMP snooping bridges" would be gone. Bridging loops
would be gone. Every routing problem would be traceroute-
able. And best of all, we could drop 12 bytes (source/dest
ethernet addresses) from every ethernet packet, and 18
bytes (source/dest/AP addresses) from every wifi packet.
Sure, IPv6 adds an extra 24 bytes of address (vs IPv4), but
you're dropping 12 bytes of ethernet, so the added overhead
is only 12 bytes - pretty comparable to using two 64-bit IP
addresses but having to keep the ethernet header. The idea
that we could someday drop ethernet addresses helped to
justify the oversized IPv6 addresses.

It would have been beautiful. Except for one problem: it
never happened.

Requiem for a dream

One person at work put it best: "layers are only ever added,
never removed."

All this wonderfulness depended on the ability to start over
and throw away the legacy cruft we had built up. And that is,
unfortunately, pretty much impossible. Even if IPv6 hits 99%
penetration, that doesn't mean we'll be rid of IPv4. And if
we're not rid of IPv4, we won't be rid of ethernet addresses,
or wifi addresses. And if we have to keep the IEEE 802.3 and
802.11 framing standards, we're never going to save those
bytes. So we will always need the "IPv6 neighbour discovery"
protocol, which is just a more complicated ARP. Even though
we no longer have bus networks, we'll always need some
kind of simulator for broadcasts, because that's how ARP
works. We'll need to keep running a local DHCP server at
home so that our obsolete IPv4 light bulbs keep working.
We'll keep needing NAT so that our obsolete IPv4 light bulbs
can keep reaching the Internet.

And that's not the worst of it. The worst of it is we still need
the infinite abomination that is layer 2 bridging, because of
one more mistake the IPv6 team forgot to fix. Unfortunately,
while they were blue-skying IPv6 back in the 1990s, they
neglected to solve the "mobile IP" problem. As I understand
it, the idea was to get IPv6 deployed first - it should only take
a few years - and then work on it after IPv4 and MAC
addresses had been eliminated, at which time it should be
much easier to solve, and meanwhile, nobody really has a
"mobile IP" device yet anyway. I mean, what would that even
mean, like carrying your laptop around and plugging into a
series of one ethernet port after another while you ftp a file?
Sounds dumb.

The killer app: mobile IP

Of course, with a couple more decades of history behind us,
now we know a few use cases for carrying around a computer
- your phone - and letting it plug into one ethernet port
wireless access point after another. We do it all the time. And
with LTE, it even mostly works! With wifi, it works sometimes.
Good, right?

Not really, because of the Internet's secret shame: all that
stuff only works because of layer 2 bridging. Internet routing
can't handle mobility - at all. If you move around on an IP
network, your IP address changes, and that breaks any
connections you have open.

Corporate wifi networks fake it for you, bridging their whole
LAN together at layer 2, so that the giant central DHCP
server always hands you the same IP address no matter
which corporate wifi access point you join, and then gets
your packets to you, with at most a few seconds of confusion
while the bridge reconfigures. Those newfangled home wifi
systems with multiple extenders/repeaters do the same trick.
But if you switch from one wifi network to another as you
walk down the street - like if there's a "Public Wifi" service in
a series of stores - well, too bad. Each of those gives you a
new IP address, and each time your IP address changes, you
kill all your connections.

LTE tries even harder. You keep your IP address (usually an
IPv6 address in the case of mobile networks), even if you
travel miles and miles and hop between numerous cell
towers. How? Well... they typically just tunnel all your traffic
back to a central location, where it all gets bridged together
(albeit with lots of firewalling) into one super-gigantic virtual
layer 2 LAN. And your connections keep going. At the
expense of a ton of complexity, and a truly embarrassing
amount of extra latency, which they would really like to fix,
but it's almost impossible.

Making mobile IP actually work1

So okay, this has been a long story, but I managed to extract
it from those IETF people eventually. When we got to this
point - the problem of mobile IP - I couldn't help but ask.
What went wrong? Why can't we make it work?

The answer, it turns out, is surprisingly simple. The great
design flaw was in how the famous "4-tuple" (source ip,
source port, destination ip, destination port) was defined. We
use the 4-tuple to identify a given TCP or UDP session; if a
packet has those four fields the same, then it belongs to a
given session, and we can deliver it to whatever socket is
handling that session. But the 4-tuple crosses two layers:
internetwork (layer 3) and transport (layer 4). If, instead, we
had identified sessions using only layer 4 data, then mobile IP
would have worked perfectly.

Let's do a quick example. X port 1111 is talking to Y port 80,
so it sends a packet with 4-tuple (X,1111,Y,80). The response
comes back with (Y,80,X,1111), and the kernel delivers it to
the socket that generated the original packet. When X sends
more packets tagged (X,1111,Y,80), then Y delivers them all
to the same server socket, and so on.

Then, if X hops IP addresses, it gets a new name, say Q. Now
it'll start sending packets with (Q,1111,Y,80). Y has no idea
what that means, and throws it away. Meanwhile, if Y sends
packets tagged (Y,80,X,1111), they get lost, because there is
no longer an X to receive them.



Imagine now that we tagged sockets without reference to
their IP address. For that to work, we'd need much bigger
port numbers (which are currently 16 bits). Let's make them,
say, 128 or 256 bits, some kind of unique hash.

Now X sends out packets to Y with tag (uuid,80). Note, the
packets themselves still contain the (X,Y) addressing
information, down at layer 3 - that's how they get routed to
the right machine in the first place. But the kernel doesn't
use the layer 3 information to decide which socket to deliver
to; it just uses the uuid. The destination port (80 in this case)
is only needed to initiate a new session, to identify what
service you want to connect to, and can be ignored or left out
after that.

For the return direction, Y's kernel caches the fact that
packets for (uuid) go to IP address X, which is the address it
most recently received (uuid) packets from.

Now imagine that X changes addresses to Q. It still sends out
packets tagged with (uuid,80), to IP address Y, but now those
packets come from address Q. On machine Y, it receives the
packet and matches it to the socket associated with (uuid),
notes that the packets for that socket are now coming from
address Q, and updates its cache. Its return packets can now
be sent, tagged as (uuid), back to Q instead of X. Everything
works! (Modulo some care to prevent connection hijacking by
impostors.2)

There's only one catch: that's not how UDP and TCP work,
and it's too late to update them. Updating UDP and TCP
would be like updating IPv4 to IPv6; a project that sounded
simple, back in the 1990s, but decades later, is less than half
accomplished (and the first half was the easy part; the long
tail is much harder).

The positive news is we may be able to hack around it with
yet another layering violation. If we throw away TCP - it's
getting rather old anyway - and instead use QUIC over UDP,
then we can just stop using the UDP 4-tuple as a connection
identifier at all. Instead, if the UDP port number is the "special
mobility layer" port, we unwrap the content, which can be
another packet with a proper uuid tag, match it to the right
session, and deliver those packets to the right socket.

There's even more good news: the experimental QUIC
protocol already, at least in theory, has the right packet
structure to work like this. It turns out you need unique
session identifiers (keys) anyhow if you want to use stateless
packet encryption and authentication, which QUIC does. So,
perhaps with not much work, QUIC could support transparent
roaming. What a world that would be!

At that point, all we'd have to do is eliminate all remaining
UDP and TCP from the Internet, and then we would definitely
not need layer 2 bridging anymore, for real this time, and
then we could get rid of broadcasts and MAC addresses and
SDN and DHCP and all that stuff.

And then the Internet would be elegant again.

1 Edit 2017-08-16: It turns out that nothing in this section
requires IPv6. It would work fine with IPv4 and NAT, even
roaming across multiple NATs.

2 Edit 2017-08-15: Some people asked what "some care to
prevent connection hijacking" might look like. There are
various ways to do it, but the simplest would be to do
something like the SYN-ACK-SYNACK exchange TCP does at
connection startup. If Y just trusts the first packet from the
new host Q, then it's too easy for any attacker to take over
the X->Y connection by simply sending a packet to Y from
anywhere on the Internet. (Although it's a bit hard to guess
which 256-bit uuid to fill in.) But if Y sends back a cookie that
Q must receive and process and send back to Y, that ensures
that Q is at least a man-in-the-middle and not just an outside
attacker (which is all TCP would guarantee anyway). If you're
using an encrypted protocol (like QUIC3), the handshake can
also be protected by your session key.

3 Edit 2017-10-24: Besides QUIC, there are several other
candidates for such a protocol, including MinimaLT. I didn't
mention MinimaLT originally because it wasn't part of my
original conversation with the IETF people, but I don't mean
to imply that QUIC is the only possible option as a roaming-
capable TCP replacement. In fact, MinimaLT is the first
protocol I heard of that elegantly solved the roaming
problem. Future solutions that might get adopted, including
by QUIC, will likely be modeled after MinimaLT's solution.

Update 2020-07-09: I've posted more thoughts on
IPv4/IPv6 migration and interoperability on the Tailscale blog.

Related 
Content-Centric Networking (CCN) as an alternative to IP (2012)

IPv4, IPv6, and a sudden change in attitude (2020)
Unrelated 

Indirection (2004)

Try my project! Tailscale: a new, magically easy mesh VPN based on
WireGuard.

Why would you follow me on twitter? Use RSS.

apenwarr-on-gmail.com

https://cr.yp.to/papers.html#minimalt
https://tailscale.com/blog/two-internets-both-flakey/
https://apenwarr.ca/log/20121111
https://apenwarr.ca/log/20200708
https://apenwarr.ca/log/20040518
https://tailscale.com/
https://twitter.com/apenwarr
https://apenwarr.ca/log/rss.php
mailto:apenwarr-on-gmail.com

	2017-08-10 »

