
Santiago Palladino
Jul 19 · 3 min read

The Parity Wallet Hack Explained
TL;DR

A vulnerability was found on the Parity Multisig Wallet version 1.5+, that allowed an

attacker to steal over 150,000 ETH (~30M USD).

If you are using the affected wallet contract, make sure to move all funds to a

different wallet immediately.

The OpenZeppelin MultiSig wallet is unaffected by the vulnerability.

•

•

•

. . .

Today, we witnessed the second largest hack, in terms of ETH stolen, in the history of

the Ethereum network. As of 12:19 pm UTC, the attacker’s account had drained

153,037 ETH from three high-profile multi-signature contracts used to store funds from

past token sales. The problem was initially reported by the Parity team, since the

affected MultiSig wallet contract was part of the Parity software suite.

As soon as we learned about the vulnerability, we rushed to analyze the cause of the

issue, to check if OpenZeppelin’s multisignature implementation was affected too.

First and foremost, we want to assure our users that the OpenZeppelin MultiSig
wallet is unaffected by the vulnerability, and is safe to use.

That being said, we proceed to share our findings, to raise awareness on the pitfalls

that made the attack possible.

The attack explained
The attacker sent two transactions to each of the affected contracts: the first to obtain

exclusive ownership of the MultiSig, and the second to move all of its funds.

We can see that the first transaction is a call to initWallet (line 216 of WalletLibrary):

// constructor - just pass on the owner array to the multiowned and // the limit to daylimit
function initWallet(address[] _owners, uint _required, uint _daylimit) {
 initDaylimit(_daylimit);
 initMultiowned(_owners, _required);
}

This function was probably created as a way to extract the wallet’s constructor logic into

a separate library. This uses a similar idea to the proxy libraries pattern we talked about

in the past. The wallet contract forwards all unmatched function calls to the library using

delegatecall , in line 424 of Wallet:

function() payable {
 // just being sent some cash?
 if (msg.value > 0)
 Deposit(msg.sender, msg.value);
 else if (msg.data.length > 0)
 _walletLibrary.delegatecall(msg.data);
}

This causes all public functions from the library to be callable by anyone, including

initWallet , which can change the contract’s owners. Unfortunately, initWallet has no

checks to prevent an attacker from calling it after the contract was initialized. The

attacker exploited this and simply changed the contract’s m_owners state variable to a

list containing only their address, and requiring just one confirmation to execute any

transaction:

Function: initWallet(address[] _owners, uint256 _required, uint256 _daylimit) ***

MethodID: 0xe46dcfeb
[0]:0060
[1]:00
[2]:00116779808c03e4140000
[3]:0001
[4]:000000000000000000000000b3764761e297d6f121e79c32a65829cd1ddb4d32

After that, it was just a matter of invoking the execute function to send all funds to an

account controlled by the attacker:

Function: execute(address _to, uint256 _value, bytes _data) ***

MethodID: 0xb61d27f6
[0]:000000000000000000000000b3764761e297d6f121e79c32a65829cd1ddb4d32
[1]:00116779808c03e4140000
[2]:0060
[3]:00
[4]:00

This execution was automatically authorized, since the attacker was then the only

owner of the multisig, effectively draining the contract of all its funds.

The solution
The attack could have been prevented either by not extracting the constructor logic into

the library contract altogether, or better by not using delegatecall as a catch-all
forwarding mechanism. The recommended pattern is explicitly defining which library

functions can be invoked externally on the wallet contract.

It is important to note that the technique of abstracting logic into a shared library can be

quite useful, though. It helps improve code reusability and reduces gas deployment

costs. This attack, however, makes clear that a set of best practices and standards
is needed in the Ethereum ecosystem to ensure that these coding patterns are
implemented effectively and securely. Otherwise, the most innocent-looking bug can

have disastrous consequences.

At Zeppelin Solutions, we have been working on a solution to these problems, based on

our experience building OpenZeppelin and on the many security audits we have

performed. We will be sharing more details about this soon.

If you are interested in further discussing the technical details of the attack, and how

these security issues can be mitigated, join our slack channel, follow us on Medium, or

apply to work with us! We’re also available for smart contract security development and

auditing work.

Thanks to Francisco Giordano and Manuel Araoz.

Blockchain Ethereum Smart Contracts Security Hacks

59 3

Santiago Palladino
Follow

Zeppelin Solutions
Growing and protecting the core infrastructure of an open, global economy, powered
by blockchain technologies.

Follow

Sign in / Sign up

HOME • SECURITY • OPENZEPPELIN • TECH BLOG • INSTITUTIONAL • ABOUT GET STARTED

Never miss a story from Zeppelin
Solutions

GET UPDATES

https://blog.zeppelin.solutions?source=logo-lo_d9a01dfa3f07---e4ea2b44c434
https://medium.com/m/signin?redirect=https%3A%2F%2Fblog.zeppelin.solutions%2Fon-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions
https://blog.zeppelin.solutions/tagged/security
https://blog.zeppelin.solutions/openzeppelin/home
https://blog.zeppelin.solutions/tech-blog/home
https://blog.zeppelin.solutions/institutional/home
https://blog.zeppelin.solutions/about
https://zeppelin.solutions/?utm_source=medium&utm_medium=publication&utm_campaign=navigationMenu
https://blog.zeppelin.solutions/search
https://blog.zeppelin.solutions/@spalladino?source=post_header_lockup
https://blog.zeppelin.solutions/@spalladino?source=post_header_lockup
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/MultisigWallet.sol
https://etherscan.io/address/0xb3764761e297d6f121e79c32a65829cd1ddb4d32#internaltx
https://blog.parity.io/security-alert-high-2/
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol
https://etherscan.io/tx/0x9dbf0326a03a2a3719c27be4fa69aacc9857fd231a8d9dcaede4bb083def75ec
https://etherscan.io/tx/0xeef10fc5170f669b86c4cd0444882a96087221325f8bf2f55d6188633aa7be7c
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L216
https://blog.zeppelin.solutions/proxy-libraries-in-solidity-79fbe4b970fd
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L424
https://etherscan.io/tx/0x9dbf0326a03a2a3719c27be4fa69aacc9857fd231a8d9dcaede4bb083def75ec
https://etherscan.io/tx/0xeef10fc5170f669b86c4cd0444882a96087221325f8bf2f55d6188633aa7be7c
http://zeppelin.solutions/
https://slack.openzeppelin.org/
https://blog.zeppelin.solutions/
https://zeppelin.solutions/about#jobs
https://zeppelin.solutions/services
https://zeppelin.solutions/security-audits
https://medium.com/@frangio?source=post_page
https://medium.com/@maraoz?source=post_page
https://blog.zeppelin.solutions/tagged/blockchain?source=post
https://blog.zeppelin.solutions/tagged/ethereum?source=post
https://blog.zeppelin.solutions/tagged/smart-contracts?source=post
https://blog.zeppelin.solutions/tagged/security?source=post
https://blog.zeppelin.solutions/tagged/hacks?source=post
https://blog.zeppelin.solutions/@spalladino?source=footer_card
https://blog.zeppelin.solutions/@spalladino
https://blog.zeppelin.solutions?source=footer_card
https://blog.zeppelin.solutions?source=footer_card
https://blog.zeppelin.solutions

	The Parity Wallet Hack Explained
	TL;DR
	The attack explained
	The solution
	Santiago Palladino
	Zeppelin Solutions

