
MENU

My Writing & Coding Work�ow
by Jacob Zelko
4 min read
• October 29, 2020

My personal workflow for terminal-based coding, writing, research, and more!

Hello everyone! It has been quite sometime since I last posted! Suffice it to say, I have been immensely busy the past year but I am happy to say I am able to resurrect this
blog!

I have thoroughly grown into my own workflow for programming, research, and writing. Today, I am happy to be able to share it with you!

If you prefer to watch a video describing most of this entire process, here is an overview of my workflow from one of my live streams. It does not go as in-depth as this
document but should serve as a strong complement to this post.

My Workflow Tools of Choice

I use Alacritty as my terminal, zsh and oh-my-zsh as my shell and plugin manager respectively, tmux as my multiplexer, lsd as my list command with fun icons, Fantasque
Sans Mono as my typeface font, neovim for my editor, fzf paired with ripgrep for speedy and interactive file finding, bat an enhanced cat with a git diff gutter, pandoc for
writing in markdown and LaTeX and outputting the piece to whatever file type I want, Zotero for managing my collection on scientific literature, ranger as a terminal-based
file explorer, and gruvbox-dark as my general color palette.

Here are gists to the relevant config files I use to modify my interface and user experience:

neovim: init.vim
Alacritty: .alacritty.yml
tmux: .tmux.conf
zsh: .zshrc

Here is a picture of what that looks like altogether:

My Workflow in Action

The following sections describe in broad strokes my workflow. I mention some plugins that I use and are provided in my config files. If you want to learn more about them, I
encourage you to read through my config files or search for them.

Floating Terminals

Floating terminals are immensely powerful and I love them! This enables me to quickly pull up a terminal and do some changes without having to split tmux panes or get
out of vim. Furthermore, what is awesome is that you can use it as a sort of vim-slime tool to send lines of code to the floating terminal. This is a great feature as it uses
your last used floating terminal for its target - therefore, if you switch between projects a lot, just switch your floating terminal accordingly. No need to keep opening and
closing REPL sessions and such!

Persistent Working Sessions via tmux

Though it is a little hard to see, I closed my terminal completely. Oh no! All my paneling and windows have disappeared! I’ll have to spend valuable time getting my
workflow set back up… Or do I?

tmux can actually remember all these layouts with the plugins, resurrect and continuum . This is great for when your computer unexpectedly dies or crashes as
everything is backed up at regular intervals you define! Furthermore, pairing the (neo)vim plugin, obsession , allows tmux to also automatically recover vim layouts and
sessions as well. You will never have to worry about losing your terminal workflow again!

Mouse Mode

tmux and (neo)vim also support mouse mode and interactivity! I can quickly jump all over the place with my mouse or easily resize any opened pane.

Interactive File Finding

http://jacobzelko.com/
https://www.twitch.tv/thecedarprince
https://youtu.be/2SLZQQfMF8E
https://github.com/alacritty/alacritty
https://www.zsh.org/
https://ohmyz.sh/
https://github.com/tmux/tmux
https://github.com/Peltoche/lsd
https://github.com/belluzj/fantasque-sans
https://github.com/neovim/neovim
https://github.com/junegunn/fzf
https://github.com/BurntSushi/ripgrep
https://github.com/sharkdp/bat
https://github.com/jgm/pandoc
http://jacobzelko.com/setting-up-zotero/
https://github.com/ranger/ranger
https://github.com/morhetz/gruvbox-contrib
https://gist.github.com/TheCedarPrince/7b9b51af4c146880f17c39407815b594
https://gist.github.com/TheCedarPrince/7743091bd8743a7568b718f30bf707c2
https://gist.github.com/TheCedarPrince/07f6f8f79b1451ec436ff8dee236ccdd
https://gist.github.com/TheCedarPrince/77afe2674803d965a0f5abd108337040

I integrated the powerful file finding tool, fzf , with ripgrep to quickly find files I am looking to use. Then, in my (neo)vim configuration file, I merged these two together
into one function that I can easily call while editing files in (neo)vim. find files I search for and pandoc to enable citations in pandoc, markdown, or TeX files.

Terminal-Based File Explorer

Furthermore, I also use the great tool, ranger , which allows me to have a terminal based file explorer. It’s nice as it pops up in its own window and does not actually
directly interfere with any of the background files being edited. It even has image preview capabilities!

Citation Engine & Live Preview

As a researcher, this part gets me immensely excited! While I am writing, I can actively insert citation keys into whatever I am working on via vim-pandoc . With my config
file, you will have to specify where your own .bib file exists. Furthermore, markdown-preview allows me to preview my markdown in a web browser and vim-latex-live-
preview allows me to view my current TeX files in a pdf viewer – works for subfiles too! This works for whenever I write TeX files or markdown files which makes writing a
breeze!

If any of this section is confusing, I strongly encourage you to read my article on Knowledge Management.

Deprecated Workflow Tools

These are parts of my workflow that I used to use. They have been retired for a variety of reasons but all in an effort to improve my workflow. I have kept these around in
case anyone finds it useful!

Vim-Slime for Rapid Evaluation

Rationale for deprecation: I used to use vim-slime but deprecated it from my workflow because of the flexibility of floating terminals. Not only could I use floating
terminals to send code, I could also quickly flip through terminals in one button press.

Here, I target my Julia REPL in a tmux panel and use the vim-slime plugin to send code from my Julia script opened in neovim to the Julia REPL for rapid evaluation. This
config works for any time you want to target a window. This also works for code chunks such as functions or loops!

Conclusion

I hope you found my workflow and toolchain interesting! My dream would be for this workflow to serve as inspiration for your own workflow. Make it your own and all the
best!

If you spot any errors or have any questions, feel free to contact me about them!

 Share Tweet LinkedIn Reddit

Previous
 Zotero - Simple Set-Up, Great Tool

Next
NeuriViz (Part 1) - Performant Graphics for Neuroinformatics

…from breath to breath…

http://jacobzelko.com/personal-research-management/
http://jacobzelko.com/contact/
https://www.facebook.com/sharer/sharer.php?u=http%253A%252F%252Fjacobzelko.com%252Fworkflow%252F
https://twitter.com/intent/tweet?text=My+Writing+%2526+Coding+Workflow%20http%253A%252F%252Fjacobzelko.com%252Fworkflow%252F
https://www.linkedin.com/shareArticle?mini=true&url=http%253A%252F%252Fjacobzelko.com%252Fworkflow%252F
https://reddit.com/submit?title=My+Writing+%2526+Coding+Workflow&url=http%253A%252F%252Fjacobzelko.com%252Fworkflow%252F
http://jacobzelko.com/setting-up-zotero/
http://jacobzelko.com/neuriviz-1/
http://jacobzelko.com/atom.xml
https://twitter.com/jacob_zelko
https://github.com/TheCedarPrince

	Skip links
	My Writing & Coding Workflow
	My Workflow Tools of Choice
	My Workflow in Action
	Floating Terminals
	Persistent Working Sessions via tmux
	Mouse Mode
	Interactive File Finding
	Terminal-Based File Explorer
	Citation Engine & Live Preview

	Deprecated Workflow Tools
	Vim-Slime for Rapid Evaluation

	Conclusion
	Previous
	Next

